
Solutions to Question Sheet 6, Differentiation I. v1 2019-20

Verifying the Definition

In these questions we use the Limit Laws to verifying the definition

f ′(a) = lim
x→a

f(x)− f(a)

x− a
= lim

h→0

f(a+ h)− f(a)

h
. (1)

We will also look at examples where the limit fails to exist so f is not dif-
ferentiable at a, and where we have to look at both one-sided limits to show
that the limit in (1) exists, or not.

1. Using the definition of the derivative as a limit, and not the differen-
tiation rules, calculate the derivatives of the following functions.

i) x4, x ∈ R ii)
√
x, x > 0 iii)

1

1 + x4
, x ∈ R.

Solution i) Let a ∈ R be given. Observe that for x 6= a,

x4 − a4

x− a
=

(x− a) (x3 + ax2 + a2x+ a3)

x− a
= x3 + ax2 + a2x+ a3.

So

lim
x→a

x4 − a4

x− a
= lim

x→a

(
x3 + ax2 + a2x+ a3

)
.

But polynomials are continuous for all x, so the limit at a is simply the
value of the polynomial at a, in this case 4a3. Since the limit exists the
function x4 is differentiable at a, with derivative 4a3.

Yet a ∈ R was arbitrary so x4 is differentiable on R with

d

dx
x4 = 4x3.

ii) Let a > 0 be given. Observe that for x 6= a and x > 0,

√
x−
√
a

x− a
=

√
x−
√
a

(
√
x−
√
a) (
√
x+
√
a)

=
1√

x+
√
a
.
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So

lim
x→a

√
x−
√
a

x− a
= lim

x→a

1√
x+
√
a

=
1

limx→a (
√
x+
√
a)

by the Quotient Rule for Limits,

=
1

2
√
a
. (2)

Here we have used the result seen in Question 3ii, Sheet 4, that
√
x is

continuous for x > 0 and so the limit at a > 0 equals the value at a.
For the Quotient Rule we have used the fact that limx→a (

√
x+
√
a) =√

a 6= 0. Since the limit exists the function
√
x is differentiable at a,

with derivative 1/ (2
√
a).

Yet a ∈ R+ was arbitrary so
√
x is differentiable on R+ with

d

dx

√
x =

1

2
√
x
.

iii) Let a ∈ R be given. Observe that for x 6= a,

1
1+x4
− 1

1+a4

x− a
=

(1 + a4)− (1 + x4)

(1 + a4) (1 + x4) (x− a)

= − x4 − a4

(1 + a4) (1 + x4) (x− a)

= −x
3 + ax2 + a2x+ a3

(1 + a4) (1 + x4)
,

using the ideas seen in Part i. So, by the Quotient Rule for Limits,

lim
x→a

1
1+x4
− 1

1+a4

x− a
= − 1

(1 + a4)

limx→a (x3 + ax2 + a2x+ a3)

limx→a (1 + x4)
= − 4a3

(1 + a4)2
.

In the final equality we have used the fact that a polynomial is con-
tinuous and so the limit at a equals the value of the polynomial at a.
Since the limit exists the function 1/(1 + x4) is differentiable at a, with
derivative −4a3/(1 + a4)

2
.
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Yet a ∈ R was arbitrary so 1/(1 + x4) is differentiable on R with

d

dx

1

1 + x4
= − 4x3

(1 + x4)2
.

2. Recall the results from the Lecture Notes that

lim
x→0

sinx

x
= 1 and lim

x→0

cosx− 1

x
= 0.

Assume the addition formulae for cosine and tangent.

Prove, by verifying the definition that,

i)
d

dx
cos = − sinx,

for x ∈ R,

ii)
d

dx
tanx =

1

cos2 x

for x /∈
{
π
2

+ nπ : n ∈ Z
}
.

Solution i) Let a ∈ R be given. Then

lim
y→0

cos (y + a)− cos a

y
= lim

y→0

cos y cos a− sin y sin a− cos a

y

= cos a lim
y→0

(
cos y − 1

y

)
− sin a lim

y→0

sin y

y

by the Sum Rule for Limits

= cos a× 0− 1× sin a

by the recollection in the question

= − sin a,

Since the limit exists cosx is differentiable at a with derivative − sin a.
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Yet a ∈ R was arbitrary so cosx is differentiable on R with

d

dx
cosx = − sinx.

ii) Let a ∈ R, but not of the form π/2 + nπ for any n ∈ Z, be given.
Then

lim
y→0

tan (a+ y)− tan a

y
= lim

y→0

1

y

(
tan a+ tan y

1− tan a tan y
− tan a

)
,

by the sum formula for the tangent. This equals

lim
y→0

tan y

y

(
1 + tan2 a

1− tan a tan y

)
= lim

y→0

sin y

y

(
1

cos y − tan a sin y

)
1

cos2 a
,

having used

1 + tan2 a =
cos2 a+ sin2 a

cos2 a
=

1

cos2 a
.

By the Quotient and Sum Rules for limits this equals

1

cos2 a

(
lim
y→0

sin y

y

)
1

limy→0 cos y − tan a limy→0 sin y

=
1

cos2 a
× 1× 1

1− 0× tan a
=

1

cos2 a
.

Since the limit exists tan x is differentiable at a with derivative 1/cos2 a.
Yet a ∈ R was arbitrary subject to a 6= π/2 + nπ for any n ∈ Z, so
tanx is differentiable for all real x 6= π/2 + nπ for any n ∈ Z and

d

dx
tanx =

1

cos2 x
.

Aside You were asked to verify the definition, but if you had not been
so restricted you might have applied the Quotient Rule for differentia-
tion. Then

d

dx
tanx =

d

dx

(
sinx

cosx

)
=

cosxd sinx
dx
− sinxd cosx

dx

cos2 x
,

provided cos2 x 6= 0, i.e. x 6= π/2 +nπ for any n ∈ Z. Using the results
proved for sinx and cos x we have

d

dx
tanx =

cos2 x+ sin2 x

cos2 x
=

1

cos2 x
,

valid for x : cosx 6= 0 i.e. x /∈ {(1 + 2n)π/2 : n ∈ Z}.
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3. Recall the result from the Notes that

lim
h→0

eh − 1

h
= 1.

Use this, and the definition of derivative, to find the derivatives of

i) e2x ii) xex. iii) sinhx.

Solution i) I give two solutions. First, let a ∈ R be given. Observe
that for h 6= 0,

f(a+ h)− f(a)

h
=

e2(a+h) − e2a

h
having written x = a+ h,

= e2a
(
e2h − 1

h

)
having used ea+h = eaeh,

= e2a
(
eh − 1

h

)(
eh + 1

)
,

since e2h − 1 =
(
eh − 1

) (
eh + 1

)
. Hence

lim
h→0

f(a+ h)− f(a)

h
= lim

h→0
e2a
(
eh − 1

h

)(
eh + 1

)
= e2a lim

h→0

(
eh − 1

h

)
× lim

h→0

(
eh + 1

)
by Product Rule for Limits,

= 2e2a.

Since the limit exists the function e2x is differentiable at a, with deriva-
tive 2e2a.

Yet a ∈ R was arbitrary so e2x is differentiable on R with

de2x

dx
= 2e2x.

Second proof, let a ∈ R be given. Observe that for x 6= a,

f(x)− f(a)

x− a
=
e2x − e2a

x− a
=

(ex − ea) (ex + ea)

x− a
.
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Take the limit x→ a, using the Product Rule for limits, allowable since
both individual limits exist since we know that ex is differentiable on
R. Thus

lim
x→a

f(x)− f(a)

x− a
= lim

x→a

(ex − ea)
x− a

lim
x→a

(ex + ea)

= ea × 2ea = 2e2a.

Since the limit exists the function e2x is differentiable at a, with deriva-
tive 2e2a.

Yet a ∈ R was arbitrary so e2x is differentiable on R with

de2x

dx
= 2e2x.

ii) I give two solutions. First, let a ∈ R be given. Observe that for
h 6= 0,

f(a+ h)− f(a)

h
=

(a+ h) ea+h − aea

h
= aea

eh − 1

h
+ eaeh.

Now use the Sum Rule for Limits to get

lim
h→0

f(a+ h)− f(a)

h
= aea lim

h→0

eh − 1

h
+ ea lim

h→0
eh = aea + ea.

Since the limit exists the function xex is differentiable at a, with deriva-
tive aea + ea.

Yet a ∈ R was arbitrary so xex is differentiable on R with

dxex

dx
= xex + ex.
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Second Solution. Let a ∈ R be given. Observe that for x 6= a,

f(x)− f(a)

x− a
=
xex − aea

x− a
=
xex − aex + aex − aea

x− a
,

having added in zero, 0 = −aex + aex. Continuing, this equals

xe− a
x− a

ex + a
ex − ea

x− a
= ex + a

ex − ea

x− a
.

Thus, by the Sum Rule for Limits,

lim
x→a

f(x)− f(a)

x− a
= lim

x→a
ex + a lim

x→a

ex − ea

x− a
= ea + aea,

the second limit following from the fact that ex is differentiable on R.

Yet a ∈ R was arbitrary so xex is differentiable on R with

dxex

dx
= xex + ex.

iii) Recall the definition

sinhx =
ex − e−x

2

for x ∈ R. Let a ∈ R be given. With h 6= 0 we have

sinh (a+ h)− sinh a

h
=

1

h

(
ea+h − e−a−h

2
− ea − e−a

2

)

=
1

2h

((
ea+h − ea

)
−
(
e−a−h − e−a

))
=

ea

2

(
eh − 1

h

)
− e−ae−h

2

(
1− eh

h

)

=
1

2

(
ea +

e−a

eh

)(
eh − 1

h

)
.
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Now use the Rules for Limits to get

lim
h→0

sinh (a+ h)− sinh a

h
=

1

2

(
ea +

e−a

limh→0 eh

)
lim
h→0

(
eh − 1

h

)
,

=
1

2

(
ea + e−a

)
= cosh a,

allowable since both limits exist and limh→0 e
h = 1 6= 0. Therefore

lim
h→0

sinh (a+ h)− sinh a

h
=

1

2

(
ea + e−a

)
= cosh a.

Since the limit exists the function sinhx is differentiable at a, with
derivative cosh a.

Yet a ∈ R was arbitrary so sinhx is differentiable on R with

d sinhx

dx
= coshx.

4. Use the definition of derivative to find

d

dx
(ex sinx)

for x ∈ R.

(You may assume if necessary, that sin (a+ h) = sin a cosh+cos a sinh).

Hint Do not use the result but look at the proof of the Product Rule
for differentiation and use the idea of “adding in zero”.

Solution I give two solutions. First, let a ∈ R be given and
consider, for h 6= 0,

f(a+ h)− f(a)

h
=

ea+h sin (a+ h)− ea sin a

h

= ea
eh (sin a cosh+ cos a sinh)− sin a

h

= ea
eh cosh− 1

h
sin a+ ea

eh sinh

h
cos a.
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Now use the hint given in the question and “add in zero” in the form
0 = − cosh+ cosh. Then

eh cosh− 1

h
=

(
eh − 1

)
cosh+ cosh− 1

h

= cosh
eh − 1

h
+

cosh− 1

h.

Use the Sum and Product Rules for limits to get

lim
h→0

f(a+ h)− f(a)

h
= ea sin a lim

h→0

(
eh − 1

)
h

lim
h→0

cosh+ ea sin a lim
h→0

cosh− 1

h

+ea cos a lim
h→0

eh lim
h→0

sinh

h
.

= ea sin a×1×1 + ea sin a×0 + ea cos a×1×1

= ea sin a+ ea cos a.

Since the limit exists the function ex sinx is differentiable at a, with
derivative ea sin a+ ea cos a.

Yet a ∈ R was arbitrary so ex sinx is differentiable on R with

dex sinx

dx
= ex sinx+ ex cosx.

Second Solution. Let a > 0 be given. Consider

f(x)− f(a)

x− a
=

ex sinx− ea sin a

x− a

=
ex sinx− ea sinx+ ea sinx− ea sin a

x− a
, (3)

having again added in zero, this time of the form 0 = −ea sinx+ea sinx.
Continuing, (3) equals

sinx
ex − ea

x− a
+ ea

sinx− sin a

x− a
.

Take the limit as x→ a and use the Product and Sum Rules for limits.
This is allowable sine all the individual limits exist because we know
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that ex and sinx are differentiable on R. Thus,

lim
x→a

f(x)− f(a)

x− a
= lim

x→a
sinx lim

x→a

ex − ea

x− a
+ lim

x→a
ea lim

x→a

sinx− sin a

x− a

= sin a× ea + ea × cos a.

Since the limit exists the function ex sinx is differentiable at a, with
derivative ea sin a+ ea cos a.

Yet a ∈ R was arbitrary so ex sinx is differentiable on R with

dex sinx

dx
= ex sinx+ ex cosx

5. i) Prove that |sin θ| is not differentiable at θ = 0.

ii) Prove, by verifying the definition, that |sin θ| sin θ is differentiable
at θ = 0, and find the value of the derivative.

You may assume that limθ→0 sin θ = 0 and limθ→0 (sin θ)/θ = 1.

Solution i. If 0 < θ < π/2 then sin θ > 0 so |sin θ| = sin θ. Thus

|sin θ| − |sin 0|
θ − 0

=
sin θ

θ
→ 1

as θ → 0+ by assumption in question.

If −π/2 < θ < 0 then sin θ < 0 and |sin θ| = − sin θ. Thus

|sin θ| − |sin 0|
θ − 0

=
− sin θ

θ
→ −1

as θ → 0− by assumption in question.

Since the one-sided limits are different we conclude that

lim
θ→0

|sin θ| − |sin 0|
θ − 0

does not exist and hence |sin θ| is not differentiable at θ = 0.
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The graph of |sin θ| is

π 2ππ−2π

x

y

ii. For θ 6= 0 consider

|sin θ| sin θ − |sin 0| sin 0

θ − 0
= |θ|

∣∣∣∣sin θθ
∣∣∣∣ (sin θ

θ

)
→ 0

as θ → 0 by the Product Rule for limits and the assumption of the
question. Because the limit exists |sin θ| sin θ is differentiable at θ = 0,
and the value of the derivative is 0.

The graph of |sin θ| sin θ is

π 2ππ−2π

x

y

6. Let f : R→ R be defined by

f(x) =


x2 + 4x− 12

x2 − 4
if x 6= 2,−2

2 if x = 2

1 if x = −2.
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i) Prove, by verifying the definition, that f(x) is differentiable at
x = 2, and find the value of the derivative.

ii) Prove that f(x) is not differentiable at x = −2.

Solution i) For x 6= 2 or −2 consider

f(x)− f(2)

x− 2
=

1

(x− 2)

(
x2 + 4x− 12

x2 − 4
− 2

)

=
1

(x− 2)

−x2 + 4x− 4

(x− 2) (x+ 2)

= − (x− 2)2

(x− 2)2 (x+ 2)
= − 1

x+ 2

→ −1

4

as x → 2. Since the limit exists f(x) is differentiable at x = 2, with

derivative −1/4.

ii. For x 6= 2 and −2 consider

f(x)− f(−2)

x− (−2)
=

1

(x+ 2)

(
x2 + 4x− 12

x2 − 4
− 1

)
=

4

(x+ 2)2
.

This does not have a finite limit as x→ −2 and so f is not differentiable
at x = −2.
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The graph of f is

−2 2

1
2 x

y

7. Let f : R→ R be defined by

f(x) =

{
2x if x ≥ 1

x2 + 1 if x < 1
.

By verifying the definition prove that f is differentiable at x = 1 and
find the value of the derivative.

Solution A function f is differentiable at a iff limx→a (f(x)− f(a))/(x− a)

exists and for this it suffices to show that both one-sided limits exist
and are equal.

For this question, if x < 1, we have f(x) = x2 + 1 in which case

lim
x→1−

f(x)− f(1)

x− 1
= lim

x→1−

(x2 + 1)− 2

x− 1
= lim

x→1−

x2 − 1

x− 1

= lim
x→1−

(x+ 1) = 2.

If x > 1, then f(x) = 2x in which case

lim
x→1+

f(x)− f(1)

x− 1
= lim

x→1+

2x− 2

x− 1
= lim

x→1+
2 = 2.

The one-sided limits exist and are equal, so f is differentiable at x = 1.
The common value, 2, is the value of the derivative there, i.e. f ′ (1) = 2.
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The graph of f is

1

2

x

y
x2+1

2x

8. Let f : R→ R be defined by

f(x) =

{
x2 − x for x ≤ 1

x3 − 1 for x > 1.

Prove that f is not differentiable at x = 1.

(It is quickly seen that the one-sided limits of f at x = 1 are both 0, the
value of f(0), and so f is continuous at x = 1. Thus we have another
example that continuous does not imply differentiable.)

Solution By definition f(1) = 0. If x ≤ 1, then f(x) = x2 − x and

lim
x→1−

f(x)− f(1)

x− 1
= lim

x→1−

x2 − x− 0

x− 1
= lim

x→1−
x = 1.

If x > 1 then f(x) = x3 − 1 so

lim
x→1+

f(x)− f(1)

x− 1
= lim

x→1+

x3 − 1

x− 1
= lim

x→1+

(x− 1) (x2 + x+ 1)

x− 1

= lim
x→1+

(
x2 + x+ 1

)
= 3.

Since the two one-sided limits are different the limit does not exist and
so f is not differentiable at x = 1.
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The graph of f is

1

2

x

y
x2−x

x3−1

9. Let f : R→ R be defined by

f(x) =

{
x2 if x ≥ 0,

−x2 if x < 0.

i) Use the definition to show that f is differentiable at x = 0 and
find the value of f ′(0) .

ii) Find f ′(x) for all x ∈ R.

iii) Is the derivative f ′ differentiable on R? Give your reasons.

Solution i) By definition f(0) = 0. Consider first x ≥ 0 when f(x) =
x2 and

lim
x→0+

f(x)− f(0)

x− 0
= lim

x→0+

x2

x
= lim

x→0+
x = 0.

Next, when x < 0 we have f(x) = −x2 so

lim
x→0−

f(x)− f(0)

x− 0
= lim

x→0−

−x2

x
= − lim

x→0+
x = 0.

Hence, because both one-sided limits exist and are equal, the limit as
x→ 0 exists and

f ′(0) = lim
x→0

f(x)− f(0)

x− 0
= 0.
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ii) For x 6= 0, then f(x) equals either x2 or −x2 when f ′(x) = 2x or
−2x. Hence

f ′(x) =


2x if x > 0

0 if x = 0

−2x if x < 0

=

{
2x if x ≥ 0,

−2x if x < 0.

iii) We next try to differentiate f ′ at x = 0. Look at the two one-sided
limits:

lim
x→0+

f ′(x)− f ′(0)

x− 0
= lim

x→0+

2x

x
= 2,

while

lim
x→0−

f ′(x)− f ′(0)

x− 0
= lim

x→0−

−2x

x
= −2.

Since the two-one sided limits are different, the limit as x → 0 does
not exist, i.e. f ′ does not have a derivative at x = 0.

Notes a) We could write f ′(x) = 2 |x| and we saw in the notes that |x|
is not differentiable at x = 0.

b) Given n ≥ 1 could you construct a function that has n derivatives
at 0, i.e. f (i) (0) exist for all 1 ≤ i ≤ n, yet has no n + 1 derivative at
0, i.e. f (n+1) (0) does not exist? End of Notes
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